Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8426, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637521

RESUMO

SARS-CoV-2 lipid nanoparticle mRNA vaccines continue to be administered as the predominant prophylactic measure to reduce COVID-19 disease pathogenesis. Quantifying the kinetics of the secondary immune response from subsequent doses beyond the primary series and understanding how dose-dependent immune waning kinetics vary as a function of age, sex, and various comorbidities remains an important question. We study anti-spike IgG waning kinetics in 152 individuals who received an mRNA-based primary series (first two doses) and a subset of 137 individuals who then received an mRNA-based booster dose. We find the booster dose elicits a 71-84% increase in the median Anti-S half life over that of the primary series. We find the Anti-S half life for both primary series and booster doses decreases with age. However, we stress that although chronological age continues to be a good proxy for vaccine-induced humoral waning, immunosenescence is likely not the mechanism, rather, more likely the mechanism is related to the presence of noncommunicable diseases, which also accumulate with age, that affect immune regulation. We are able to independently reproduce recent observations that those with pre-existing asthma exhibit a stronger primary series humoral response to vaccination than compared to those that do not, and further, we find this result is sustained for the booster dose. Finally, via a single-variate Kruskal-Wallis test we find no difference between male and female humoral decay kinetics, however, a multivariate approach utilizing  Least Absolute Shrinkage and Selection Operator (LASSO) regression for feature selection reveals a statistically significant (p < 1 × 10 - 3 ), albeit small, bias in favour of longer-lasting humoral immunity amongst males.


Assuntos
COVID-19 , Imunidade Humoral , Feminino , Masculino , Humanos , Meia-Vida , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos , RNA Mensageiro , Anticorpos Antivirais , Vacinação
2.
Virus Evol ; 10(1): veae006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425472

RESUMO

Despite a relatively low mutation rate, the large number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has allowed for substantial genetic change, leading to a multitude of emerging variants. Using a recently determined mutation rate (per site replication), as well as within-host parameter estimates for symptomatic SARS-CoV-2 infection, we apply a stochastic transmission-bottleneck model to describe the survival probability of de novo SARS-CoV-2 mutations as a function of bottleneck size and selection coefficient. For narrow bottlenecks, we find that mutations affecting per-target-cell attachment rate (with phenotypes associated with fusogenicity and ACE2 binding) have similar transmission probabilities to mutations affecting viral load clearance (with phenotypes associated with humoral evasion). We further find that mutations affecting the eclipse rate (with phenotypes associated with reorganization of cellular metabolic processes and synthesis of viral budding precursor material) are highly favoured relative to all other traits examined. We find that mutations leading to reduced removal rates of infected cells (with phenotypes associated with innate immune evasion) have limited transmission advantage relative to mutations leading to humoral evasion. Predicted transmission probabilities, however, for mutations affecting innate immune evasion are more consistent with the range of clinically estimated household transmission probabilities for de novo mutations. This result suggests that although mutations affecting humoral evasion are more easily transmitted when they occur, mutations affecting innate immune evasion may occur more readily. We examine our predictions in the context of a number of previously characterized mutations in circulating strains of SARS-CoV-2. Our work offers both a null model for SARS-CoV-2 mutation rates and predicts which aspects of viral life history are most likely to successfully evolve, despite low mutation rates and repeated transmission bottlenecks.

3.
Nat Commun ; 15(1): 1511, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396042

RESUMO

Inspired by biology, great progress has been made in creating artificial molecular motors. However, the dream of harnessing proteins - the building blocks selected by nature - to design autonomous motors has so far remained elusive. Here we report the synthesis and characterization of the Lawnmower, an autonomous, protein-based artificial molecular motor comprised of a spherical hub decorated with proteases. Its "burnt-bridge" motion is directed by cleavage of a peptide lawn, promoting motion towards unvisited substrate. We find that Lawnmowers exhibit directional motion with average speeds of up to 80 nm/s, comparable to biological motors. By selectively patterning the peptide lawn on microfabricated tracks, we furthermore show that the Lawnmower is capable of track-guided motion. Our work opens an avenue towards nanotechnology applications of artificial protein motors.


Assuntos
Proteínas Motores Moleculares , Nanotecnologia , Movimento (Física) , Proteínas Motores Moleculares/química , Peptídeos
4.
iScience ; 26(10): 107915, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37790281

RESUMO

Older individuals and people with HIV (PWH) were prioritized for COVID-19 vaccination, yet comprehensive studies of the immunogenicity of these vaccines and their effects on HIV reservoirs are not available. Our study on 68 PWH and 23 HIV-negative participants aged 55 and older post-three vaccine doses showed equally strong anti-spike IgG responses in serum and saliva through week 48 from baseline, while PWH salivary IgA responses were low. PWH had diminished live-virus neutralization responses after two vaccine doses, which were 'rescued' post-booster. Spike-specific T cell immunity was enhanced in PWH with normal CD4+ T cell count, suggesting Th1 imprinting. The frequency of detectable HIV viremia increased post-vaccination, but vaccines did not affect the size of the HIV reservoir in most PWH, except those with low-level viremia. Thus, older PWH require three doses of COVID-19 vaccine for maximum protection, while individuals with unsuppressed viremia should be monitored for adverse reactions from HIV reservoirs.

5.
bioRxiv ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37502977

RESUMO

Older individuals and people with HIV (PWH) were prioritized for COVID-19 vaccination, yet comprehensive studies of the immunogenicity of these vaccines and their effects on HIV reservoirs are not available. We followed 68 PWH aged 55 and older and 23 age-matched HIV-negative individuals for 48 weeks from the first vaccine dose, after the total of three doses. All PWH were on antiretroviral therapy (cART) and had different immune status, including immune responders (IR), immune non-responders (INR), and PWH with low-level viremia (LLV). We measured total and neutralizing Ab responses to SARS-CoV-2 spike and RBD in sera, total anti-spike Abs in saliva, frequency of anti-RBD/NTD B cells, changes in frequency of anti-spike, HIV gag/nef-specific T cells, and HIV reservoirs in peripheral CD4 + T cells. The resulting datasets were used to create a mathematical model for within-host immunization. Various regimens of BNT162b2, mRNA-1273, and ChAdOx1 vaccines elicited equally strong anti-spike IgG responses in PWH and HIV - participants in serum and saliva at all timepoints. These responses had similar kinetics in both cohorts and peaked at 4 weeks post-booster (third dose), while half-lives of plasma IgG also dramatically increased post-booster in both groups. Salivary spike IgA responses were low, especially in INRs. PWH had diminished live virus neutralizing titers after two vaccine doses which were 'rescued' after a booster. Anti-spike T cell immunity was enhanced in IRs even in comparison to HIV - participants, suggesting Th1 imprinting from HIV, while in INRs it was the lowest. Increased frequency of viral 'blips' in PWH were seen post-vaccination, but vaccines did not affect the size of the intact HIV reservoir in CD4 + T cells in most PWH, except in LLVs. Thus, older PWH require three doses of COVID-19 vaccine to maximize neutralizing responses against SARS-CoV-2, although vaccines may increase HIV reservoirs in PWH with persistent viremia.

6.
Epidemiol Infect ; 151: e121, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37218612

RESUMO

Human monkeypox (mpox) virus is a viral zoonosis that belongs to the Orthopoxvirus genus of the Poxviridae family, which presents with similar symptoms as those seen in human smallpox patients. Mpox is an increasing concern globally, with over 80,000 cases in non-endemic countries as of December 2022. In this review, we provide a brief history and ecology of mpox, its basic virology, and the key differences in mpox viral fitness traits before and after 2022. We summarize and critique current knowledge from epidemiological mathematical models, within-host models, and between-host transmission models using the One Health approach, where we distinguish between models that focus on immunity from vaccination, geography, climatic variables, as well as animal models. We report various epidemiological parameters, such as the reproduction number, R0, in a condensed format to facilitate comparison between studies. We focus on how mathematical modelling studies have led to novel mechanistic insight into mpox transmission and pathogenesis. As mpox is predicted to lead to further infection peaks in many historically non-endemic countries, mathematical modelling studies of mpox can provide rapid actionable insights into viral dynamics to guide public health measures and mitigation strategies.


Assuntos
Saúde Única , Animais , Humanos , Ecologia , Estudos Epidemiológicos , Modelos Epidemiológicos , Geografia , /epidemiologia
7.
J Math Biol ; 86(5): 86, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37121986

RESUMO

A compartment model for an in-host liquid nanoparticle delivered mRNA vaccine is presented. Through non-dimensionalisation, five timescales are identified that dictate the lifetime of the vaccine in-host: decay of interferon gamma, antibody priming, autocatalytic growth, antibody peak and decay, and interleukin cessation. Through asymptotic analysis we are able to obtain semi-analytical solutions in each of the time regimes which allows us to predict maximal concentrations and better understand parameter dependence in the model. We compare our model to 22 data sets for the BNT162b2 and mRNA-1273 mRNA vaccines demonstrating good agreement. Using our analysis, we estimate the values for each of the five timescales in each data set and predict maximal concentrations of plasma B-cells, antibody, and interleukin. Through our comparison, we do not observe any discernible differences between vaccine candidates and sex. However, we do identify an age dependence, specifically that vaccine activation takes longer and that peak antibody occurs sooner in patients aged 55 and greater.


Assuntos
Vacina BNT162 , Vacinas de mRNA , Humanos , Anticorpos , Modelos Epidemiológicos , RNA Mensageiro/genética , Anticorpos Antivirais
8.
J Theor Biol ; 564: 111449, 2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-36894132

RESUMO

Within-host SARS-CoV-2 modelling studies have been published throughout the COVID-19 pandemic. These studies contain highly variable numbers of individuals and capture varying timescales of pathogen dynamics; some studies capture the time of disease onset, the peak viral load and subsequent heterogeneity in clearance dynamics across individuals, while others capture late-time post-peak dynamics. In this study, we curate multiple previously published SARS-CoV-2 viral load data sets, fit these data with a consistent modelling approach, and estimate the variability of in-host parameters including the basic reproduction number, R0, as well as the best-fit eclipse phase profile. We find that fitted dynamics can be highly variable across data sets, and highly variable within data sets, particularly when key components of the dynamic trajectories (e.g. peak viral load) are not represented in the data. Further, we investigated the role of the eclipse phase time distribution in fitting SARS-CoV-2 viral load data. By varying the shape parameter of an Erlang distribution, we demonstrate that models with either no eclipse phase, or with an exponentially-distributed eclipse phase, offer significantly worse fits to these data, whereas models with less dispersion around the mean eclipse time (shape parameter two or more) offered the best fits to the available data across all data sets used in this work. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Estudos de Coortes , Carga Viral
9.
Math Biosci ; 358: 108970, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773843

RESUMO

We consider a general mathematical model for protein subunit vaccine with a focus on the MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2, and use the model to study immunological outcomes in the humoral and cell-mediated arms of the immune response from vaccination. The mathematical model is fit to vaccine clinical trial data. We elucidate the role of Interferon-γ and Interleukin-4 in stimulating the immune response of the host. Model results, and results from a sensitivity analysis, show that a balance between the TH1 and TH2 arms of the immune response is struck, with the TH1 response being dominant. The model predicts that two-doses of the vaccine at 28 days apart will result in approximately 85% humoral immunity loss relative to peak immunity approximately 6 months post dose 1.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Subunidades Proteicas , COVID-19/prevenção & controle , SARS-CoV-2 , Interferon gama , Vacinação , Anticorpos Antivirais
11.
Sci Rep ; 12(1): 21232, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481777

RESUMO

The lipid nanoparticle (LNP)-formulated mRNA vaccines BNT162b2 and mRNA-1273 are a widely adopted multi vaccination public health strategy to manage the COVID-19 pandemic. Clinical trial data has described the immunogenicity of the vaccine, albeit within a limited study time frame. Here, we use a within-host mathematical model for LNP-formulated mRNA vaccines, informed by available clinical trial data from 2020 to September 2021, to project a longer term understanding of immunity as a function of vaccine type, dosage amount, age, and sex. We estimate that two standard doses of either mRNA-1273 or BNT162b2, with dosage times separated by the company-mandated intervals, results in individuals losing more than 99% humoral immunity relative to peak immunity by 8 months following the second dose. We predict that within an 8 month period following dose two (corresponding to the original CDC time-frame for administration of a third dose), there exists a period of time longer than 1 month where an individual has lost more than 99% humoral immunity relative to peak immunity, regardless of which vaccine was administered. We further find that age has a strong influence in maintaining humoral immunity; by 8 months following dose two we predict that individuals aged 18-55 have a four-fold humoral advantage compared to aged 56-70 and 70+ individuals. We find that sex has little effect on the immune response and long-term IgG counts. Finally, we find that humoral immunity generated from two low doses of mRNA-1273 decays at a substantially slower rate relative to peak immunity gained compared to two standard doses of either mRNA-1273 or BNT162b2. Our predictions highlight the importance of the recommended third booster dose in order to maintain elevated levels of antibodies.


Assuntos
COVID-19 , Vacinas de mRNA , Humanos , Vacina BNT162 , Vacina de mRNA-1273 contra 2019-nCoV , Pandemias , COVID-19/prevenção & controle , Imunidade Humoral
12.
J Virol ; 96(13): e0050922, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35699447

RESUMO

Cell-mediated immunity is critical for long-term protection against most viral infections, including coronaviruses. We studied 23 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected survivors over a 1-year post-symptom onset (PSO) interval by ex vivo cytokine enzyme-linked immunosorbent spot assay (ELISpot) assay. All subjects demonstrated SARS-CoV-2-specific gamma interferon (IFN-γ), interleukin 2 (IL-2), and granzyme B (GzmB) T cell responses at presentation, with greater frequencies in severe disease. Cytokines, mainly produced by CD4+ T cells, targeted all structural proteins (nucleocapsid, membrane, and spike) except envelope, with GzmB and IL-2 greater than IFN-γ. Mathematical modeling predicted that (i) cytokine responses peaked at 6 days for IFN-γ, 36 days for IL-2, and 7 days for GzmB, (ii) severe illness was associated with reduced IFN-γ and GzmB but increased IL-2 production rates, and (iii) males displayed greater production of IFN-γ, whereas females produced more GzmB. Ex vivo responses declined over time, with persistence of IL-2 in 86% and of IFN-γ and GzmB in 70% of subjects at a median of 336 days PSO. The average half-life of SARS-CoV-2-specific cytokine-producing cells was modeled to be 139 days (~4.6 months). Potent T cell proliferative responses persisted throughout observation, were CD4 dominant, and were capable of producing all 3 cytokines. Several immunodominant CD4 and CD8 epitopes identified in this study were shared by seasonal coronaviruses or SARS-CoV-1 in the nucleocapsid and membrane regions. Both SARS-CoV-2-specific CD4+ and CD8+ T cell clones were able to kill target cells, though CD8 tended to be more potent. IMPORTANCE Our findings highlight the relative importance of SARS-CoV-2-specific GzmB-producing T cell responses in SARS-CoV-2 control and shared CD4 and CD8 immunodominant epitopes in seasonal coronaviruses or SARS-CoV-1, and they indicate robust persistence of T cell memory at least 1 year after infection. Our findings should inform future strategies to induce T cell vaccines against SARS-CoV-2 and other coronaviruses.


Assuntos
COVID-19 , Citocinas , Imunidade , SARS-CoV-2 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , COVID-19/imunologia , Vacinas contra COVID-19 , Citocinas/imunologia , Feminino , Humanos , Memória Imunológica , Interferon gama/metabolismo , Interleucina-2/imunologia , Masculino , Índice de Gravidade de Doença , Fatores de Tempo
13.
ACS Nanosci Au ; 2(3): 140-159, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35726277

RESUMO

Inspired by molecular motors in biology, there has been significant progress in building artificial molecular motors, using a number of quite distinct approaches. As the constructs become more sophisticated, there is also an increasing need to directly observe the motion of artificial motors at the nanoscale and to characterize their performance. Here, we review the most used methods that tackle those tasks. We aim to help experimentalists with an overview of the available tools used for different types of synthetic motors and to choose the method most suited for the size of a motor and the desired measurements, such as the generated force or distances in the moving system. Furthermore, for many envisioned applications of synthetic motors, it will be a requirement to guide and control directed motions. We therefore also provide a perspective on how motors can be observed on structures that allow for directional guidance, such as nanowires and microchannels. Thus, this Review facilitates the future research on synthetic molecular motors, where observations at a single-motor level and a detailed characterization of motion will promote applications.

14.
Vaccines (Basel) ; 9(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34451985

RESUMO

During the SARS-CoV-2 global pandemic, several vaccines, including mRNA and adenovirus vector approaches, have received emergency or full approval. However, supply chain logistics have hampered global vaccine delivery, which is impacting mass vaccination strategies. Recent studies have identified different strategies for vaccine dose administration so that supply constraints issues are diminished. These include increasing the time between consecutive doses in a two-dose vaccine regimen and reducing the dosage of the second dose. We consider both of these strategies in a mathematical modeling study of a non-replicating viral vector adenovirus vaccine in this work. We investigate the impact of different prime-boost strategies by quantifying their effects on immunological outcomes based on simple system of ordinary differential equations. The boost dose is administered either at a standard dose (SD) of 1000 or at a low dose (LD) of 500 or 250 vaccine particles. Results show dose-dependent immune response activity. Our model predictions show that by stretching the prime-boost interval to 18 or 20, in an SD/SD or SD/LD regimen, the minimum promoted antibody (Nab) response will be comparable with the neutralizing antibody level measured in COVID-19 recovered patients. Results also show that the minimum stimulated antibody in SD/SD regimen is identical with the high level observed in clinical trial data. We conclude that an SD/LD regimen may provide protective capacity, which will allow for conservation of vaccine doses.

15.
J Phys Chem B ; 125(25): 6857-6863, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34151560

RESUMO

We present here a model for multivalent diffusive transport whereby a central point-like hub is coupled to multiple feet, which bind to complementary sites on a two-dimensional landscape. The available number of binding interactions is dependent on the number of feet (multivalency) and on their allowed distance from the central hub (span). Using Monte Carlo simulations that implement the Gillespie algorithm, we simulate multivalent diffusive transport processes for 100 distinct walker designs. Informed by our simulation results, we derive an analytical expression for the diffusion coefficient of a general multivalent diffusive process as a function of multivalency, span, and dissociation constant Kd. Our findings can be used to guide the experimental design of multivalent transporters, in particular, providing insight into how to overcome trade-offs between diffusivity and processivity.


Assuntos
Algoritmos , Simulação por Computador , Difusão , Método de Monte Carlo
16.
Soft Matter ; 17(6): 1468-1479, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33347523

RESUMO

Nature has evolved many mechanisms for achieving directed motion on the subcellular level. The burnt-bridges ratchet (BBR) is one mechanism used to achieve superdiffusive molecular motion over long distances through the successive cleavage of surface-bound energy-rich substrate sites. This mechanism has been associated with both nanoscale and microscale movement, with the latter accomplished through polyvalent interactions between a large hub (e.g. influenza virus) and substrate (e.g. cell surface receptors). Experimental successes in achieving superdiffusive motion by synthetic polyvalent BBRs have raised questions about the dynamics of their motility, including whether rolling or translation is better able to direct motion of microscale spherical hubs. Here we simulate the three-dimensional dynamics of a polyvalent sphere moving on and cleaving an elastic substrate. We find that substrate stiffness plays an important role in controlling both the motor's mode of motility and its directional persistence. As we tune lateral substrate stiffness from soft to stiff we find there exists an intermediate value that optimizes rolling behaviour. We also find that there is an optimal substrate stiffness for maximizing persistence length, while stiffness does not influence as strongly the superdiffusive dynamics of the particle. Lastly, we examine the effect of substrate density, and show that softer landscapes are better able to buffer against decreases in substrate occupancy, with the spherical motor maintaining superdiffusive motion more on softer landscapes than on stiff landscapes as occupancy drops. Our results highlight the importance of surface in controlling the motion of polyvalent BBRs.

17.
Langmuir ; 34(45): 13550-13557, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30303387

RESUMO

Many experiments and applications require the chemical coupling of target molecules to surfaces, during which the elimination of nonspecific interactions presents a difficult challenge. We report on a technologically accessible surface passivation and chemical conjugation method based on an NHS end-labeled F127 Pluronic block copolymer (F127-NHS). To quantify interactions between the F127-NHS surface and magnetic microspheres, we developed a simple assay: the microsphere adhesion by gravity, inversion, then counting, or "MAGIC" assay. To improve blocking of microspheres while maintaining the ability to chemically couple additional molecules, we implemented a pH-dependent two-step chemical modification process for amine microspheres. This process achieves an extremely high level of blocking nonspecific interactions (less than 2% nonspecific adhesion) for a variety of microsphere surface charges and chemical functionalities. We also demonstrate the ability to specifically tether magnetic microspheres to an F127-NHS surface, using single DNA molecules. Using the DNA microspheres, we establish the applicability of the surface for force spectroscopy (stable with an applied load >30 pN) via the massively parallel technique of centrifuge force microscopy. Finally, we demonstrate that the surface can be used in fluorescence studies with a fluorogenic peptide cleavage assay, with high levels of blocking achieved for both the fluorogenic peptide and trypsin. These results suggest applications including, but not limited to, single-molecule force spectroscopy and fluorescence, biosensors, medical implants, and anti-biofouling, which could make use of the F127-NHS surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...